STRUCTURE CRISTALLINE DE CH₃MgBr·3C₄H₈O

MAURICE VALLINO

Laboratoire de Chimie de l'École Normale Supérieure (Laboratoire de Mécanismes réactionnels), 24, rue Lhomond, Paris 5ème et Laboratoire de Minéralogie et Cristallographie de la Faculté des Sciences, 9, Quai Saint-Bernard, Paris 5ème, associés au CNRS (France)

(Reçu le 17 juillet 1969)

SUMMARY

The structure of $CH_3MgBr \cdot 3C_4H_8O$ was solved by single crystal X-ray diffraction techniques. The five-coordinate magnesium is at the center of a trigonal bipyramide. Methyl and bromine are disordered and tetrahydrofuran rings distorded. A rigid body least square refinement program is described.

RÉSUMÉ

La structure de $CH_3MgBr \cdot 3C_4H_8O$ a été déterminée par diffraction de rayons X, sur monocristaux. L'atome de magnésium, pentacoordiné, est au centre d'une bipyramide triangulaire. On a constaté un désordre des groupes CH_3 et Br, ainsi qu'une déformation des tétrahydrofurannes. Un programme d'affinement par moindres carrés avec solides rigides est décrit.

PRÉPARATION DES CRISTAUX

En partant d'une solution de bromure de méthylmagnésium dans le tétrahydrofuranne, nous avons pu, par évaporation à chaud et refroidissement lent, obtenir des monocristaux. D'autre part, une étude systématique de la cristallisation de ces solutions par évaporation progressive, entreprise au laboratoire de l'ENS¹, a fourni de nombreux précipités dont certains étaient bien cristallisés. Les compositions, déterminées par dosage de OH⁻ et Br⁻ après hydrolyse, variaient de Mg-(CH₃)_{0.5}Br_{1.5}·3 THF à CH₃MgBr·3 THF mais l'étude radiocristallographique a montré qu'il s'agissait de la même espèce cristalline : monoclinique, a=12.5 Å, b=12.3Å, c=13.4 Å, $\beta=122^{\circ}30'$, V=1740 Å³, groupe spatial Cc. En admettant Z=4 on trouve une densité théorique de 1.27 à 1.39 et un coefficient de remplissage² de 0.65. La densité, mesurée par flottation dans des mélanges C₆H₆/C₃H₇Br était de 1.3.

DÉTERMINATION DE LA STRUCTURE

La détermination de la structure à été faite sur des cristaux de composition $CH_3MgBr \cdot 3$ THF, un certain nombre de mesures sur des échantillons de composition différente ne montrant pas de variations sensibles.

Les mesures d'intensité ont été faites par la méthode photographique, avec films superposés, selon le montage de Weissenberg, le cristal tournant autour de l'axe c. La strate équatoriale h0l fut mesurée par précession.

Les intensités des taches ont été déterminées avec un microphotomètre intégrateur.

L'agitation thermique assez forte limitant sin θ/λ à environ 0.5, on mesura 437 intensités indépendantes et attribua aux taches inobservables une intensité égale à la moitié de la plus faible valeur observée.

La composition variable des cristaux suggère un remplacement possible des groupes CH_3 et Br. Ceci est plausible si on considère les rayons de Van der Waals des deux groupes: $R_{Br} = 1.95$ Å; $R_{CH_3} = d_{CH} + R_H = 1.08 + 1.17 = 2.25$ Å.

De plus, les clichés montrent quelques rares taches de surstructure indiquant un désordre presque total.

La fonction de Patterson permet alors de localiser les groupes (CH_3, Br) et les atomes de magnésium. L'emploi de la méthode de l'atome lourd, combinée avec des considérations d'encombrement et les formes connues des tétrahydrofurannes. conduit à une solution satisfaisante.

Une aide considérable fut apportée par l'écriture d'un programme d'affinement admettant l'existence de solides indéformables. Chacun de ces solides ne dépendant que de six paramètres au lieu de trois par atome, le calcul est simplifié, la convergence accélérée et on évite les solutions absurdes que donnent facilement les programmes à atomes indépendants.

Cependant, si on impose la forme plane aux tétrahydrofurannes, l'accord avec l'expérience n'est pas très bon (R=0.275). En acceptant de les déformeer on aboutit

	x		7
			<i>L</i>
Br ₁ (CH ₃)	0.107	0.194	-0.093
Br ₂ (CH ₃)	-0.099	0.195	0.089
Mg	0	0.104	0
O1	0.019	-0.063	0.004
C11	-0.015	-0.126	0.076
C ₁₂	0.110	-0.135	0.005
C ₁₃	0.047	-0.238	0.100
C14	0.038	-0.244	-0.020
02	0.192	0.089	0.174
C21	0.212	0.116	0.286
C ₂₂	0.311	0.103	0.184
C ₂₃	0.342	0.063	0.376
C24	0.408	0.056	0.306
03	-0.169	0.087	-0.158
C ₃₁	-0.286	0.055	-0.169
C ₃₂	-0.170	0.047	-0.261
C33	-0.370	-0.009	-0.286
C34	-0.305	0.006	-0.354

TABLEAU 1

Fig. 1. Molécule CH₃MgBr · 3 THF.

Fig. 2. Structure cristalline de CH₃MgBr · 3 THF.

à une solution avec R = 0.15. Il est à noter qu'on a également dû déformer ces cycles dans l'étude de MgBr₂·4 THF³ et qu'il est admis depuis longtemps que le cyclopentane n'est pas plan.

Enfin, on peut améliorer l'accord en faisant varier les coefficients d'occupation des sites CH_3 et Br. Ceci a été fait avec toutes les coordonnées atomiques variant indépendemment et a donné un résultat où les atomes ont peu bougé, où les deux sites sont différemment occupés : 0.6 Br et 0.4 CH_3 pour le site 1, 0.5 Br et 0.5 CH_3

pour le site 2; enfin R=0.13. Il n'est pas sûr que la différence trouvée entre les sites soit significative, mais l'absence de déplacement des atomes montre que la structure est correcte. (Tableau 1, Figs. 1 et 2).

DESCRIPTION DE LA STRUCTURE

Le magnésium est pentacoordiné, les ligands se plaçant aux sommets d'une bipyramide triangulaire. Cette coordinence 5 semble rare pour le magnésium mais a déjà été décrite par Stucky⁴ dans le composé MgBr₆O·4 (C₂H₅)₂O.

Comme nous l'avons signalé, les tétrahydrofurannes ne sont pas plans; en appelant angle de pli l'angle des plans C_1C_4O et C_1C_4N (Fig. 3) et angle de torsion l'angle des plans C_1C_4N et C_2C_3M , on trouve les valeurs du Tableau 2. En revanche, les trois liaisons de l'oxygène sont sensiblement coplanaires. Les distances Mg-Br, Mg-C et Mg-O sont voisines de celles trouvées dans des travaux analogues⁵⁻⁷. On peut noter que la distance Mg-(Br, CH₃) la plus grande correspond au site qui semble le plus riche en brome.

Fig. 3.

Si on essaie de placer les atomes d'hydrogène des groupes méthylènes, en admettant une distance C-H de 1.08 Å, un angle HCH de $109^{\circ}30'$ et une disposition symétrique par rapport aux autres liaisons du groupe, on peut calculer les distances entre les atomes d'hydrogène et on trouve que toutes sauf quatre sont supérieures à 2.31 Å, les quatre plus faibles restant supérieures à 2 Å.

Compte tenu des hypothèses faites et du rayon de Van der Waals de l'atome

TABLEAU 2

DÉFORMATION DES TÉTRAHYDROFURANNES

Pli	Torsion
30°	40°
40°	0°
5.5°	10°
	Pli 30° 40° 5.5°

TABLEAU 3

DISTANCES (Å) ET ANGLES (°)

Mg-Br ₁ (CH ₃)	2.53	Br ₁ (CH ₃)MgBr ₂ (CH ₃)	126
Mg-Br ₂ (CH ₃)	2.41	Br ₁ (CH ₃)MgO ₁	112
Mg-O ₁	2.06	$Br_2(CH_3)MgO_1$	122
Mg-O ₂	2.28	Br ₁ (CH ₃)MgO ₂	90
Mg~O ₃	2.04	Br ₂ (CH ₃)MgO ₂	94
		Br ₁ (CH ₃)MgO ₃	93
		Br ₂ (CH ₃)MgO ₃	92

d'hydrogène (1.17 Å) ceci montre que la structure est compacte, les groupes méthylène entrant en contact, et suggère que la déformation des tétrahydrofurannes est nécessaire pour obtenir cet empilement compact.

Description du programme d'affinement avec solides (RAFMLC)

C'est un programme d'affinement par la méthode des moindres carrés, qui admet comme paramètres les coordonnées atomiques, un facteur de température isotrope et des facteurs d'échelle. Les atomes sont supposés en position générale mais on peut souvent tenir compte des positions spéciales en fixant des coordonnées et en donnant aux sites cristallographiques des facteurs d'occupation inférieurs à un (cependant RAFMLC n'affine pas ces facteurs).

Si un groupe d'atomes est considéré comme un solide indéformable, ses déplacements résulteront d'une rotation et d'une translation. La rotation étant faible, le déplacement correspondant peut se représenter par un produit vectoriel et on a⁸

$$\overrightarrow{\mathrm{d}M_{i}} = \overrightarrow{\mathrm{d}\Omega} \wedge \overrightarrow{GM_{i}} + \overrightarrow{\mathrm{d}T}$$
$$\mathbf{d}F = \sum \overrightarrow{\frac{\partial F}{\partial M_{i}}} \cdot \overrightarrow{\mathrm{d}M_{i}} = \overrightarrow{\mathrm{d}\Omega} \cdot \sum \left(\overrightarrow{GM_{i}} \wedge \overrightarrow{\frac{\partial F}{\partial M_{i}}} \right) + \overrightarrow{\mathrm{d}T} \cdot \sum \frac{\overrightarrow{\partial F}}{\overrightarrow{\partial M_{i}}}$$

F étant un facteur de structure et G le centre de gravité du solide. Ces formules permettent le passage des dérivées par rapport aux coordonnées à celles par rapport aux composantes de $d\vec{\Omega}$ et $d\vec{T}$. Après résolution des équations des moindres carrés on aura, pour chaque atome du solide:

$$\overrightarrow{\mathrm{d}M_{\mathrm{i}}} = (\Omega)\overrightarrow{GM_{\mathrm{i}}} + \overrightarrow{\mathrm{d}T}$$

(Ω) étant la matrice de la rotation d'axe d Ω et d'angle ε avec tg $\varepsilon \# \varepsilon = |d\Omega|$.

En outre, RAFMLC permet, avant de commencer l'affinement, d'"ajuster" un solide c'est à dire de modifier les coordonnées pour obtenir une forme théorique donnée (par un ensemble de coordonnées dans un repère orthonormé quelconque), en conservant le centre de gravité. Ceci se fait très simplement en cherchant un déplacement qui amène "au mieux" (en minimisant $\Sigma \Delta M^2$) le modèle sur le solide. On commence par amener trois points du modèle (le centre de gravité et deux atomes A et B) "sur" les points correspondants du solide : en fait on fait coincider les centres de gravité et les bissectrices de l'angle (GA, GB). Ensuite on cherche une rotation qui minimise $\Sigma \Delta M^2$

$$\overrightarrow{\Delta M} = \overrightarrow{M_0 M} + \overrightarrow{\Omega} \wedge \overrightarrow{GM}$$

$$\overrightarrow{\Delta M}^2 = \overrightarrow{M_0 M}^2 + 2 \overrightarrow{M_0 M} \cdot (\overrightarrow{\Omega} \wedge \overrightarrow{GM}) + (\overrightarrow{\Omega} \wedge \overrightarrow{GM})^2$$

$$= \overrightarrow{M_0 M}^2 - 2 \overrightarrow{GM_0} \cdot (\overrightarrow{\Omega} \wedge \overrightarrow{GM}) + \overrightarrow{\Omega} \cdot [\overrightarrow{GM} \wedge (\overrightarrow{\Omega} \wedge \overrightarrow{GM})]^2$$

$$= \overrightarrow{M_0 M}^2 - 2 \overrightarrow{\Omega} \cdot (\overrightarrow{GM} \wedge \overrightarrow{GM_0}) + \overrightarrow{GM}^2 \cdot \overrightarrow{\Omega}^2 - (\overrightarrow{GM} \cdot \overrightarrow{\Omega})^2$$

d'où l'équation donnant $\overrightarrow{\Omega}$ pour $\Sigma \Delta M^2$ minimum :

$\sum \overrightarrow{GM} \wedge \overrightarrow{GM_0} = \overrightarrow{\Omega} \cdot \sum \overrightarrow{GM^2} - \sum (\overrightarrow{GM} \cdot \overrightarrow{\Omega}) \cdot \overrightarrow{GM}$

si nécessaire, on recommence cette deuxième phase jusqu'à $\Sigma \overline{\Delta M}^2$ invariable.

RAFMLC, écrit en FORTRAN IV existe en deux versions adaptées aux ordinateurs CDC 3600 et IBM 360. Pour la structure de $CH_3MgBr \cdot 3$ THF (3 atomes isolés, 3 solides, 11 facteurs d'échelle, 437 F_{hkl}) un cycle d'affinement prend environ 30 sec de CDC 3600.

TABLEAU 4

FACTEURS	DE S	STRUCTURE	OBSERVÉS	ЕΤ	CALCULÉS
----------	------	-----------	----------	----	----------

h	k	l	Observé	Calculé	h	k	I	Observé	Ca
0	2	0	1.961	2.244	2	2	1	10.262	
0	4	0	4.060	4.122	2	4	1	19.852	19
0	6	0	6.063	7.031	2	6	1	9.815	11
0	8	0	8.333	9.294	3	1	1	5.929	7
1	1	0	18.739	18.880	3	3	1	2.976	3
1	3	0	29.261	29.080	3	5	1	7.428	6
1	5	0	3.348	8.932	3	7	1	4.128	3
1	7	0	10.794	10.181	4	2	1	3.184	3
2	0	0	10.127	10.016	4	4	1	11.480	11
2	2	0	19.129	15.698	4	6	1	9.346	9
2	4	0	3.137	4.042	5	1	1	12.433	10
2	6	0	3.899	4.269	5	3	1	16.734	13
3	1	0	8.593	8.220	5	5	1	4.139	2
3	3	0	10.683	9.312	5	7	1	10.284	11
3	5	0	6.134	5.806	6	2	1	7.630	6
3	7	0	4.491	3.698	6	4	1	14.941	12
4	0	0	15.653	10.263	6	6	1	13.418	11
4	2	0	11.673	10.444	7	1	1	10.193	8
4	4	0	8.441	6.804	- 1	1	1	17.334	14
4	6	0	11.063	11.829	-1	3	1	21.131	24
4	8	0	9.688	10.055	-1	5	1	2.963	2
5	1	0	3.678	4.666	-2	2	1	9.331	6
5	3	0	14.606	12.252	-2	4	1	5.646	5
5	5	0	21.857	20.069	-2	6	1	10.596	11
6	0	0	4.139	5.142	-3	1	1	31.557	29
6	2	0	15.553	13.544	-3	3	1	8.700	7
6	4	0	7.951	6.701	-3	5	1	4.687	8
6	6	0	10.501	10.301	_3	7	1	9.631	9
7	1	0	4.659	4.235	-4	2	1	17.398	15
7	3	0	4.850	1.525	-4	4	1	18.936	15
8	0	0	5.084	4.478	-4	6	1	18.392	16
8	2	0	5.155	4.395	—5	1	1	19.067	16
9	1	0	5.411	3.632	-5	3	1	8.251	8.
10	0	0	10.918	11.747	-5	5	1	3.805	6
0	2	1	15.028	15.511	-6	2	1	5.302	4.
0	4	1	19.352	16.512	-6	4	1	3.923	5.
0	6	1	8.938	8.901	-6	6	1	8.465	8.
0	8	1	7.480	9.284	-7	1	1	11.190	10.
1	1	1	12.275	12.752	-7	3	1	7.181	7.
1	3	1	25.156	26.537	-8	2	1	8.397	7.
1	5	1	13.261	14.448	-8	4	1	9.171	7.

STRUCTURE CRISTALLINE DE $CH_3MgBr\cdot 3 C_4H_8O$

$ \begin{array}{c} h \\ -9 \\ -9 \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \end{array} $	k 1 3 2 4 6 1 3 5 0	<i>l</i> 1 2 2 2 2 2 2	Observé 8.405 8.089 16.575 2.656 3.392	Calculé 8.171 9.389 13.652	h -3 -3	k 1 3	1	Observé 23.851	Calculé 22.341
$ \begin{array}{r} -9 \\ -9 \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ \end{array} $	1 3 2 4 6 1 3 5 0	1 1 2 2 2 2 2 2	8.405 8.089 16.575 2.656 3.392	8.171 9.389 13.652	$-3 \\ -3$	1	3	23.851	22.341
-9 0 0 1 1 1 2 2	3 2 4 6 1 3 5 0	1 2 2 2 2 2	8.089 16.575 2.656 3.392	9.389 13.652	-3	3	2	70 070	
0 0 1 1 1 2 2	2 4 6 1 3 5 0	2 2 2 2 2	16.575 2.656 3.392	13.652		5	2	30.030	29.140
0 0 1 1 1 2 2	4 6 1 3 5 0	2 2 2 2	2.656 3.392		-3	5	3	4.500	3.771
0 1 1 2 2	6 1 3 5 0	2 2 2	3.392	2.302	-3	7	3	16.836	21.219
1 1 2 2	1 3 5 0	2 2	••••	2.047	-2	2	3	19.682	13.311
1 1 2 2	3 5 0	2	15.357	14.142	-2	4	3	32.519	32.462
1 2 2	5 0		11.714	9.684	-2	6	3	27.377	27.959
2 2	0	2	10.424	11.345	-1	1	3	30.901	34.013
2		2	27.718	25.064	-1	5	3	10.076	6.622
	2	2	15.228	11.124	-1	2	5	6.162	5.927
2	4	2	3.091	3.902	-1	1	د	13.781	14.235
3	1	2	12.773	12.520	0	2	3	10.955	15.059
3	3	2	9.624	8.535	0	4	3	3.992	2.713
4	0	2	11.622	11.327	0	6	3	5.024	7.302
4	2	2	3.414	4.078	1	1	3	15.476	14.631
5	1	2	3.759	1.630	1	3	3	6.029	6.233
5	3	2	3.965	2.134	1	5	3	10.880	10.697
5	5	2	6.949	7.095	2	2	3	30.072	29.037
6	0	2	5.772	5.274	2	4	3	10.004	13.429
6	2	2	6.383	6.587	2	0	2	10.579	15.075
-1	1	2	7.851	10.669	2	1	2	27.330	20.713
-1	5	2	2.201	5.234	2	5	2	5 572	3 617
-1	2	2	9.393	11.017	3	2	2	10.820	11 514
-2	2	2	14.480	10.033	4	<u> </u>	2	16.029	16837
-2	4	2	20.039	5 201	5	1	3	5 787	5 8 5 4
2	4 6	2	10 7 76	12673	5	2	3	6.051	4 273
2	1	2	3 667	12.073	7	1	3	10 549	10.866
-3	1	2	12 364	9 512	8	4	2	11 889	12 280
	5	2	17.816	16 3/3	0	0	4	11.002	7 622
- <u>-</u>	0	2	10.033	5711	ő	2	4	11 506	11.657
_4	2	2	13 231	9415	ŏ	4	4	4.975	7.032
-4	4	2	3.089	2.216	Ő	6	4	6.814	6.753
_4	6	2	6.244	7.122	Ō	8	4	7.520	9.083
5	1	2	2.884	2.010	1	1	4	11.546	11.730
-5	3	2	5.106	4.455	1	3	4	2.906	3.871
-6	0	2	3.285	5.262	1	5	4	10.517	11.816
-6	2	2	3.412	3.472	2	0	4	26.593	25.666
-7	1	2	9.073	7.621	2	2	4	3.084	2.311
-7	3	2	7.674	8.221	2	4	4	3.490	3.989
-8	0	2	16.138	15.582	3	1	4	4.395	4.276
-9	1	3	9.860	9.431	3	3	4	17.615	14.931
-8	2	3	19.340	16.808	3	5	4	6.935	7.288
-8	4	3	10.466	10.544	4	0	4	20.290	17.682
-7	1	3	25.254	19.760	4	2	4	8.899	8.405
-7	3	3	10.955	8.222	5	·1	4	7.153	7.868
-6	2	3	12.190	10.221	. — 1	3	4	22.073	19.075
-6	4	3	24.454	21.801	-1	5	4	17.585	15.900
-5	1	3	11.826	9.250	-2	2	4	20.482	17.310
-5	3	3	4.373	4.533	-2	4	4	7.308	7.896
5	5	3	9.185	10.115	-2	6	4	11.081	12.241
-4	2	3	3.526	4.686	·-3	1	4	4.262	5.731
-4	4	3	12.190	11.575	-3	3	4	9.627	8.932
-4	0	5	10.942	10.852	 -3	5	4	13.735	15.260

(voir la suite page 8)

TABLEAU 4 (suite)

h	k	ı	Observé	Calculé	h	k	1	Observé	Calculé
-4	0	4	9.046	9.148	0	6	6	17.421	16.857
-4	2	4	2.298	1.584	0	8	6	10.673	10.595
-4	4	4	4.678	4.389	1	1	6	3.460	2.600
-5	1	4	19.287	15.954	1	3	6	16.948	13.195
- 5	3	4	11.848	9.631	1	5	6	26.828	20.990
-5	5	4	7.085	6.926	2	Ō	6	7.138	6.141
5	7	4	12.993	10.016	2	2	6	7.388	7.043
-6	0	4	25.318	23.068	2	4	6	4.405	3,914
6	2	4	11.931	10.448	2	6	6	10.465	8.443
-7	3	4	15.598	11.115	3	1	6	6.728	7,726
-7	5	4	7.857	10.419	3	3	6	4.603	3.215
0	2	5	11.032	8.677	4	Ō	6	8.737	10.038
0	4	5	21.904	24.653	4	2	6	8.866	7.979
0	6	5	19.933	19.543	5	1	6	8.281	5.857
1	1	5	9.939	6.946	5	3	6	13.212	10.533
1	3	5	19.246	17.144	6	0	6	20.464	16.506
1	5	5	4.963	3.931	-1	1	6	2.442	2.545
1	7	5	11.288	13.759	-1	3	6	9.265	9,435
2	2	5	4.539	5.037	1	5	6	21.578	18.553
2	4	5	5.036	4.397	-1	7	6	4.517	2.408
2	6	5	5.686	9.710	-2	2	6	2.327	1.433
. 3	.1	5	15.399	14.269	-2	4	6	3.194	2 3 50
3	3	5	5.275	5.684	-2	6	6	4 022	2 6 5 7
3	5	5	5.756	5.798	3	1	6	8.577	9.596
4	2	5	12.872	13.831	-3	3	ő	13 040	11 406
4	4	5	11.315	12.531	-3	5	ő	10 464	9 134
4	6	5	8.954	8.119	-3	7	ő	4.374	7 334
5	1	5	12.507	11.636	-4	Ó	6	43.089	40.247
5	3	5	8.809	7.587	-4	2	6	7.097	5933
6	2	5	9.542	8.623	-4	4	6	3.192	2.830
-1	1	5	30.032	26.487	-4	6	6	4.020	3.216
-1	3	5	7.094	5.504	-4	8	6	12 881	15 576
-1	5	5	4.373	2.733	-5	ĭ	6	13,183	11 103
-1	7	5	13.461	16.489	-5	3	6	16,949	17.336
-2	2	5	5.971	8.438	-5	5	6	11.106	10.601
-2	4	5	9.037	8.846	5	7	6	14.277	14.213
-2	6	5	13.575	14.041	6	Ó	6	15.832	12.103
-3	1	5	12.458	13.148	-6	2	6	3.130	5.503
3	3	5	8.713	8.402	6	4	6	3.686	7,771
-3	5	5	6.696	5.256	-6	6	6	4.352	4.904
-4	2	5	23.887	21.420	-7	1	6	10.166	13.040
-4	4	5	18.527	16.880	-7	3	6	3.784	7.840
-5	1	5	40.282	31.645	-7	5	6	4.310	5.735
-5	3	5	8.474	8.529	-8	0	6	14.249	15,509
-5	5	5	10.566	10.469	8	2	6	10.167	7.827
-6	2	5	24.734	27.404	-8	4	б	4.399	5.538
-6	4	5	16.926	13.323	-9	1	6	4.398	3.481
-6	6	5	8.841	7.671	-9	3	6	12.452	10.815
-7	i	5	13.243	11.722	-10	0	6	4.780	2.645
-10	4	5	14.286	13.442	-10	2	6	16.806	16.112
0	0	6	2.898	3.476	-10	4	6	5.018	4.129
0	2	6	29.197	24.969	-11	5	6	9.329	8.638
0	4	6	13.477	11.425	0	2	7	2.518	2.838

.

h	k	1	Observé	Calculé	h	k	1	Observé	Calculé
0	4	7	12.237	12.509	-5	1	8	1.645	2.744
0	6	7	10.739	11.501	-5	3	8	2.378	2.175
1	1	7	15.140	15.131	- 5	5	8	3.065	4.322
1	3	7	9.684	9.151	-4	2	8	7.478	8.204
1	5	7	3.293	1.199	-4	4	8	2.672	0.636
1	7	7	10.207	9.246	-4	6	8	3.341	5.992
1	9	7	4.943	8.722	-3	1	8	13.125	13.141
2	2	7	7.896	7.104	-3	3	8	16.147	14.449
2	4	7	13.039	10.930	-3	5	8	8.399	12.529
2	6	7	10.605	10.610	-3	7	8	8.142	9.525
-1	1	7	⁻ 8.824	7.365	2	0	8	37.288	30.791
-1	3	7	12.307	9.861	-2	2	8	9.866	11.528
-1	5	7	2.895	3.485	$^{-2}$	4	8	7.098	6.935
1	9	7	9.101	2.376	2	6	8	3.469	2.047
-2	2	7	12.482	9.365	-1	1	8	17.064	17.284
-2	4	7	13.470	11.205	-1	3	8	10.016	8.253
-3	1	7	19.115	19.236	-1	5	8	3.373	2.318
·-3	3	7	15.692	14.944	0	0	8	2.912	4.610
-3	5	7	8.945	8.867	0	2	8	3.051	2.659
-4	2	7	15.401	17.405	0	4	8	3.387	3.262
-4	4	7	20.384	19.591	1	1	8	3.319	3.660
- 5	1	7	20.110	21.068	1	3	8	8.585	8.08
5	3	7	2.165	2.317	1	5	8	9.236	8.061
-5	5	7	2.746	4.334	2	0	8	10.860	8.01
-6	2	7	5.464	6.199	2	2	8	11.059	9.133
-6	4	7	2.639	0.275	3	5	8	13.884	11.774
-6	6	7	5.553	6.810	4	2	8	5.555	4.859
-7	1	7	2.403	4.830	-11	3	9	8.377	11.860
-7	3	7	11.960	9.614	-10	2	9	4.990	2.67
7	5	7	3.082	3.656	-10	4	9	10.412	9.10
_7	7	7	11.980	12.676	-9	1	9	4.480	5.16
-8	2	7	7.101	6.356	-9	3	9	4.760	4.50
-8	4	7	15.800	14.666	-8	2	9	4.125	1.61
-8	6	7	12.201	11.190	-8	4	9	12.261	11.97
-9	1	7	13.827	12.869	-8	6	9	11.492	9.319
-12	0	8	16.693	16.437	-7	1	9	14.357	11.33.
-11	1	8	8.628	8.000	-7	3	9	10.826	9.50
-11	3	8	9.580	7.509	-7	5	9	4.664	4.110
-10	0	8	3.615	3.718	-7	7	9	11.056	13.08
-10	2	8	3.682	2.466	-6	2	9	13.722	12.84
-9	1	8	3.313	3.392	-6	4	9	11.786	9.55
-9	3	8	5.533	7.983	-6	6	9	14.510	15.30
-9	5	8	9.605	8.418	-5	1	9	9.222	8.33
8	0	8	10.061	7.765	-5	5	9	3.374	4.83
-8	2	8	18.007	17.611	-5	5	9	4.351	2.89
-8	4	8	12.193	11.475	- 5	7	9	8.034	9.50
-8	6	8	12.156	11.364	-4	2	9	2.814	0.07
-7	1	8	2.536	1.190	-4	4	9	3.889	2.42
-7	3	8	14.136	11.101	-4	6	9	4./58	2.00
-7	5	8	23.826	22.729	3	1	9	19.638	17.54
-6	0	8	2.012	1.914	-3	5	9	3.002	2.20
-6	2	8	18.550	20.313	3	5	9	4.468	0.05
-6	4	8	2.894	3.788	-2	2	9	22.274	20.60
-6	6	8	10.401	5.832	-2	4	9	12.213	8.48

(voir la suite page 10)

h	k	1	Observé	Calculé	h	k	1	Observé	Calculé
-2	6	9	7.043	9.787	-3	3	10	5.397	4.762
-1	1	9	17.769	12.461	-4	2	10	9.575	6.533
-1	3	9	8.177	5.788	-4	4	10	5.636	7.886
0	2	9	4.603	3.724	-5	3	10	11.551	14.644
0	4	9	11.630	10.599	-5	5	10	13.719	14.394
1	1	9	4.926	2.905	-6	0	10	21.184	16.483
2	4	9	10.318	10.092	-6	2	10	15.098	11.717
3	3	9	10.926	9.651	6	4	10	7.963	6.491
Ō	Ō	10	16.414	16.983	-7	1	10	4,447	5.461
0	2	10	9.486	8.929	-7	3	10	5.385	6.877
1	1	10	10.502	9.185	8	0	10	5.173	7.227
-1	1	10	6.013	6.394		2	10	7.830	7.745
-1	3	10	17.608	14.340	-9	1	10	12.364	12.149
-1	5	10	24.534	10.518	-9	3	10	10.148	9.139
-2	0	10	17.025	20.797	-10	0	10	19.929	19.246
2	2	10	5,553	4,707	-11	3	10	13.278	9.317
3	1	10	10.715	11.126		-			

TABLEAU 4 (suite)

BIBLIOGRAPHIE

1 J. RABESIAKA, travaux non publiés.

- 2 A. KITAIGORODSKII, Organic Chemical Crystallography, Consultants Bureau, New York, 1961.
- 3 M. C. PERUCAUD ET M. T. LE BIHAN, Acta Crystallogr., Sect. B, 24 (1968) 1502.
- 4 G. D. STUCKY ET R. E. RUNDLE, J. Amer. Chem. Soc., 86 (1964) 4821.
- 5 J. TONNEY ET G. D. STUCKY, Chem. Commun., (1967) 1168.
- 6 G. D. STUCKY ET R. E. RUNDLE, J. Amer. Chem. Soc., 86 (1964) 4825.
- 7 L. J. GUGGENBERGER ET R. E. RUNDLE, J. Amer. Chem. Soc., 90 (1968) 5375.
- 8 A. HYBL, R. E. RUNDLE ET D. E. WILLIAMS, J. Amer. Chem. Soc., 87 (1965) 2779.